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Abstract-A newly developed continuum model has been used with a well-established control-volume- 
based, finite-difference scheme to investigate solidification of a binary, aqueous ammonium chloride 
solution in a rectangular cavity. Advective transport of water enriched interdendritic fluids across the 
permeable liquidus interface has been identified as the primary mechanism for macroscopic species redis- 
tribution. The extent of this penetration is governed by the relative strengths of solutally driven mushy 
region flows and thermally driven flows in the bulk liquid. Unstable and double-diffusive conditions which 
accompany the discharge of interdendritic fluids into the liquid core have been shown to result in localized 

growth rate variations, remelting, and fluctuating bulk fluid transport behavior. 

1. INTRODUCTION 

UNLIKE solidification of a pure substance, binary mix- 
tures do not exhibit a distinct front separating solid 
and liquid phases. Instead, solid is formed as a per- 
meable, fluid saturated, crystalline-like matrix. The 
structure and extent of this multiphase region, known 
as the mushy region, depends on numerous factors, 
such as the specific solidification conditions and the 
initial composition of the liquid. 

During solidification (or melting), latent energy is 
released (or absorbed) at the interfaces which separate 
the phases within the mushy region. The distribution 
of this energy therefore depends on the specific struc- 
ture of the multiphase region. Latent energy released 
during solidification is transferred by conduction in 
the solid phase (and by advection, if the solid phase 
is nonstationary), as well as by the combined effects 
of conduction and advection in the liquid phase. Fluid 
motion may be induced by external means, by both 
thermal and solutal buoyancy forces, and by expan- 
sion or contraction of the system due to the phase 
transformation. Concentration variations are pri- 
marily due to differences in the solubilities of con- 
stituents within each phase. Such differences lead to 
the selective rejection of constituents at microscopic 
phase interfaces. The rejected constituents are trans- 
ported by fluid advection and, to a lesser extent, by 
diffusion within the phases. 

Difficulties associated with accommodating non- 
discrete phase change and the combined influence of 
diffusion and advection prohibit the development of 
exact solutions for binary phase change systems. 
Consequently, research has focused on the devel- 
opment of numerical procedures, which can be con- 

veniently divided into either multiple region or con- 
tinuum formulations. 

Multiple region formulations have been the primary 
focus of published literature. Such approaches involve 
separation of the domain into discrete regions for 
which conservation equations are solved inde- 
pendently and coupled using appropriate interface 
boundary conditions. While these formulations have 
been most frequently applied to discrete phase change 
in pure substances [l-3], extensions to accommodate 
a multiphase region have also been reported [4-6]. 
Regardless of the number of regions considered, 
difficulties center on tracking interfaces which are gen- 
erally unknown functions of space and time. Often 
assumptions are made regarding the geometric regu- 
larity of phase interfaces, and moving numerical 
meshes or coordinate mapping are employed to 
accommodate interface motion. While the assumption 
of interface regularity is generally justified for discrete 
phase change, experimental observations for binary 
systems [4, 7-91 suggest that the interface separating 
the liquid and multiphase regions is highly irregular. 
The irregularity is attributed to localized variations in 
growth rates and/or remelting due to the combined 
influences of thermal and solutal fluctuations in the 
bulk fluid. The need for explicit consideration of inter- 
facial boundary conditions further complicates the 
application of multiple region formulations. While 
such internal boundary conditions are relatively 
simple for discrete phase change, advective com- 
ponents of energy, momentum and species transport 
across the interface between the liquid and multiphase 
regions significantly complicate their prescription for 
binary systems. 

The analysis of binary phase change by continuum 
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NOMENCLATURE 

aspect ratio, L/H 

specific heat 
mass diffusion coefficient 

Darcy number, K,,/L’ 

mass fraction 

dimensionless mass fraction 
total mass fraction 
solid phase Fourier number, cr,t/L 
volume fraction or gravitational 
acceleration 

enthalpy 

dimensionless enthalpy, 

(h - ~l,,,)i(&, - h,,,) 
heat of fusion 
cavity height 

thermal conductivity 

thermal conductivity ratio, k,/k, 

equilibrium partition ratio, mba/m,,,, 

permeability 

permeability coefficient 
cavity sidewall spacing 
Lewis number, X,/D; 

slope 
pressure 
Prandtl number, v,/cc, 
local heat flux 

s 

I, 
average heat flux, q dylH 

0 

local dimensionless heat flux, 

qLlk,( T” - TJ 
average dimensionless heat flux. 

Glk,( T0 - TJ 
solutal Rayleigh number, 

.4Bs(“K -.f&)L3/Vl 
thermal Rayleigh number, 

&VII- TX31% 
general source term 

Schmidt number, v,/D; 
liquid phase Stefan number, 

c,(T,- T&/h, 
solid phase Stefan number, 
c,( T, - 7.,)/h,- 

time 

dimensionless time, Fo, Ste, 

I- temperature 
r* dimensionless tempcraturc 

rzr,, fusion temperature for j;’ = 0 
li. I’ .I-. J direction velocity components 
i/*. I.* dimensionless velocity components, 

f4L:‘cq. CL/X, 

v velocity vector 

I-, -1’ Cartesian coordinates 
.v*.J* dimensionless coordinates, .Y, L, ~3:t-l. 

Greek symbols 

is 

thermal diffusivity, !x;~x 

solutal expansion coefficient 

b1 thermal expansion coefficient 
r general diffusion coefficient 
0, dimensionless liquid composition. 

( f? --m/m - t3 
0; dimensionless liquid composition for 

f;’ = 0 
(‘, dimensionless tcmperaturc. 

(T- T,)l(T,,- 7,) 

i’ dynamic viscosity 
I‘ kinematic viscosity 

P density 

(I, general dependent variable 

ri/ stream function. 

Subscripts 
C cold boundar! 

; 
cutectic 

hot boundary 
k phase h 
I liquid 
liq liquidus 
Ill evaluated at T,,, 
s solid 
sol solidus 
0 initial. 

Superscript 
X constituent r 

or single domain methods has received considerably Continuum formulations have been relatively well 

less attention. Continuum formulations eliminate the established for discrete phase change in the absence 

need to consider separate conservation equations in of fluid motion. Examples include effective specific 

each phase or region by establishing conservation heat methods [lO_121 and enthalpy based for- 

equations which are universally valid. While such for- mulations [13-151. Although continuum formulations 

mulations are generally more complex than those for of multiconstituent phase change have also been 

a single phase, they eliminate the need to explicitly developed [16, 171, consideration has been restricted 

consider interface motion and boundary conditions to conditions dominated by one-dimensional 

internal to the solidifying domain. diffusion. Difficulties associated with incorporat- 
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ing advective components of momentum, energy 
and species transport have discouraged the applica- 
tion of continuum formulations for phase change 
problems involving 

[ 181, a continuum forrnu- 
lation, which integrates semi-empirical laws and 
microscopic descriptions of transport behavior with 
principles of classical mixtures theory, has been 
developed for binary, solid-liquid phase change. 
Unlike much of the continuum theory literature, a 
degree of generality has been relinquished in an effort 
to establish continuum transport equations which are 
free of ambiguous symbolic representation and amen- 
able to both clear physical interpretation and solution 
by conventional numerical procedures. The objective 
of this paper is to demonstrate the capabilities of the 
formulation by applying it to a problem of con- 
siderable importance, namely, solidification of a 
binary mixture in a rectangular, impermeable cavity. 
Although numerical treatments of thermally driven 
natural convection in such cavities has been exten- 
sively considered without and with phase change [ 1 !J- 
221, little has been done to treat the problem for ther- 
mally and compositionally driven convection without 
phase change [23] or with phase change [24, 251. In 
addition to establishing the capabilities of the for- 
mulation, the results of this study also illustrate the 
rich and complex transport phenomena common to 
problems involving multiconstituent phase change. 

2. MATHEMATICAL MODEL 

2.1. Conservation equations 
Solidification is considered in a two-dimensional, 

rectangular impermeable cavity of dimensions L x H, 
as shown schematically in Fig. 1. Initially, all bound- 
aries are insulated, the cavity is charged with a super- 
heated binary solution of composition f10 and tem- 
perature TO, and the system is in equilibrium. In this 
study two cases are considered. For case I, solidi- 
fication is induced by reducing the temperature of 
one vertical surface to a value T,, which is less than 
the eutectic temperature T,, while maintaining the 
opposing surface at the initial temperature TO. For 
case II, solidification is induced by reducing the tem- 
perature of one vertical surface to T,, while the oppos- 
ing surface is insulated. 

Continuum equations governing the conservation 
of mass, momentum, energy and species in binary, 
solid-liquid, phase change systems have been 
developed [ 181 and, for the system of interest, may be 
expressed as : 

continuity 

$4+vw) = Cl; 

T 

FIG. 1. Geometry and nomenclature relevant to binary sol- 
idification in a rectangular enclosure. 

momentum 

;@u)+v.(p”u) = v. p+u ( ) 
-$+-us)- $ (2) 

;(pv)+v.@vv)=v. p~~vv -++&) ( > I 

energy 

- ; + &-MT--‘E) + /&(A= -.&)I ; (3) 

;@h)+V.@Vh) = v. ;v, ( 1 
+v c,w,-h) --v-[p(h1--h)(V-V,)]; (4) 

[” 1 
species 

&P)+V- @Vf”> = v. (pDVf”) 

+ VWVW -f”>l -v * b(f;” -f”)(V - VA. (5) 

The mixture density, velocity, enthalpy and species 
mass fraction are defined as 

P = SSPS +&PI (6) 
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v =f,v,+fl, 

h = fShS +.f;h, 

f” = .Lfs” +f;f; 

where the phase enthalpy is 

(7) 

(8) 

(9 

7. 
hk = 

I 
c,dT+h,O. (10) 

0 

Similarly, the mixture thermal conductivity and mass 
diffusion coefficient are 

k = &, +g&, (11) 

D =J;DF. (12) 

Assumptions invoked in the development of equa- 
tions (lE(5) include : (i) saturated mixture conditions 
&+gi = 1) ; (ii) laminar, constant viscosity, New- 
tonian flow in the liquid phase ; (iii) constant phase 
densities except for variations in the buoyancy terms ; 
(iv) validity of the Boussinesq approximation ; (v) 
local thermodynamic equilibrium (Tk = T), and (vi) 
negligible species diffusion in the solid phase (0: = 0). 
In addition, (vii) the solid phase is assumed to be 
nondeforming and free of internal stress, while (viii) 
the multiphase region is viewed as a porous solid 
characterized by an isotropic permeability K. 
Although no general restrictions are associated with 
the prescription of phase specific heats and thermal 
conductivities, each is assumed to be constant in the 
present analysis. Phase enthalpies defined by equation 
(10) are therefore expressed as 

h, = c,T (13) 

h, = c,T+[(c,-c,)T,+hJ (14) 

where it is presumed that h,lTsO = 0 and that 

(hi-hs)lT=T, = h,. 
The requirement of mixture saturation and a stress- 

free solid phase within the impermeable cavity necessi- 
tates the assumption that ps = p,, and hence the equal- 
ity of phase volume and mass fractions (gk =fk). 
Without this assumption the formation of a void, for 
ps > p,, would violate the constraint of mixture 
saturation &+g, = 1). Similarly, for p, > ps, the con- 
straint of a stress-free solid phase could not be 
enforced. The continuum conservation equations are 
further simplified by assuming the solid phase to be 
stationary (V, = 0). 

Prescription of a multiphase region permeability 
requires consideration of growth morphology specific 
to the binary system under consideration. In the pre- 
sent analysis permeability is assumed to vary with 
liquid volume fraction according to the Kozeny-Car- 
man (or Blake-Kozeny) equation [26] 

(1% 

where K, is a constant which depends on the specific 
multiphase region morphology. In the pure solid 

T 

FIG. 2. Equilibrium phase diagram for a binary system. 

(gi = 0) and pure liquid @, = l), equation (15) reduces 
to the appropriate limits, namely, K = 0 and cc;, 
respectively. Equation (15) is generally considered 
valid in the laminar flow regime and for liquid volume 
fractions less than 0.5 [27]. As such, the relationship 
may become suspect in regions near the liquidus inter- 
face where flow passages become dilated. In the pre- 
sent analysis the selection of the Kozeny-Carman 
equation is based on the availability of geometric data 
(dendrite arm spacing) for the NH&l-H20 system 
and its successful implementation by previous inves- 
tigators [26]. Other suitably justified permeability 
models could, however, be easily accommodated in 
the present formulation. 

Closure of the system of conservation equations 
requires supplementary relationships for phase mass 
fractionsf, and compositions fi. With the assumption 
of local equilibrium, the required expressions may be 
obtained from the equilibrium phase diagram (Fig. 
2). Neglecting solidus and liquidus line curvature, the 
solid mass fraction and phase compositions can be 
expressed as [ 181 

(16) 

(17) 

where T,, is the liquidus temperature corresponding 
to f”, T, is the fusion temperature as .f” + 0, and the 
equilibrium partition ratio is the ratio of slopes for 
the liquidus and solidus lines (k, = ml,q/msOl). The 
assumption of local equilibrium does not preclude the 
existence of non-equilibrium conditions on a macro- 
scopic scale. Macroscopic redistribution of species by 
both advective and diffusive transport is accom- 
modated by equation (5). 

2.2. Dimensionless parameters 
The continuum conservation equations and the 

supplementary relationships can be solved for 
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velocity, enthalpy and composition fields within the 
solidifying domain. Difficulties arise, however, when 
attempts are made to represent these equations in 
a meaningful dimensionless form. For example, the 
irregular time-dependent geometry of the solid, liquid 
and multiphase regions and the dependence of solidus 
and liquidus temperatures on composition preclude 
the establishment of true length, temperature, and 
composition scales. Nevertheless, it is instructional to 
determine the number of possible parameter vari- 
ations by casting equations (l)-(5) in dimensionless 
form. Omitting details of the non-dimensionalization 
procedure, it can be verified that the present problem 
is characterized by 13 dimensionless parameters which 
include the aspect ratio A, properties of the specific 
phase change system (Pr, SC, k*, k,, Da), and par- 
ameters which depend on boundary and initial con- 
ditions (Ste,, Ste,, RaT, Ra,, e,“, OT,,,, O,,=). 

The physical significance of the resulting dimen- 
sionless parameters must be interpreted cautiously 
and should not be confused with classical single phase 
parameters. For example, following the onset of sol- 
idification, the sidewall spacing L is inadequate for 
characterizing solutal or thermal natural convection 
in the bulk liquid pool, and is clearly an inappropriate 
length scale for buoyancy driven flows in the multi- 
phase region. In addition, the difference (T,- Tc) is 
not an appropriate temperature scale for thermally 
induced natural convection in either the bulk liquid 
or multiphase regions ; nor does the difference 
(fl= -x0) represent a meaningful composition scale 
for solutally driven flows. Furthermore, while both 
thermal and solutal Rayleigh numbers evolve from 
the non-dimensionalization procedure, equilibrium 
assumptions made in the multiphase region prohibit 
the independent variation of these parameters, that is 
Bs = (f7~/0,,)0,. Hence, only in the liquid region are 
thermally and solutally driven flows independent. 

2.3. Solution methodology and model validation 
Each of the continuum conservation equations have 

been cast in the form 

;(M+vWW = V*(~W)+S$ (19) 

where 4, r, and S, represent a general continuum- 
dependent variable, diffusion coefficient, and source 
term, respectively. Hence, any established numerical 
procedure for solving coupled elliptic partial differ- 
ential equations can be used, with slight modifications 
for different S,. Since each of the continuum equa- 
tions is valid throughout the entire domain, explicit 
consideration need not be given to boundaries 
between solid, multiphase and liquid regions. Hence the 
need for moving numerical grids and/or coordinate 
mapping is eliminated, as is the need for prescribing 
complex interfacial boundary conditions between 
regions internal to the domain and for making the 

quasi-steady approximation typically used in multiple 
region solutions. Explicit consideration need only be 
given to boundary conditions applied to external 
domain surfaces. Furthermore, the continuum for- 
mulation is well suited for accommodating the con- 
tinuous constitutive transformation from the solid to 
liquid state, as well as the absorption or liberation of 
latent energy over a finite temperature range. 

An elliptic control-volume-based finite-difference 
scheme [28] has been used to solve the continuum 
equations. Results were obtained using a slightly 
biased 42 x 42 grid, as shown in Fig. 1. Supplementary 
numerical calculations suggested, however, that the 
results are not entirely grid independent. Although 
calculations performed on a 52 x 52 grid revealed that 
global parameters such as average heat extraction 
from the chilled surface (Ic and total solid A were 
within 10% of results for the 42 x 42 grid, heat transfer 
rates at the opposing vertical surface & (for case I) 
were more strongly influenced by grid size. 

Differences in qh are attributed to differences in the 
prediction of interface irregularities at the boundary 
separating the liquid and multiphase regions. Just fol- 
lowing the onset of solidification, when growth rates 
are rapid, irregularities in the liquidus were not pre- 
dicted for either the 42 x 42 or 52 x 52 grids, results for 
(?,, were smooth and regular, and quantitative agree- 
ment was good. As growth rates declined, thermal 
and solutal variations in the bulk liquid initiated the 
formation of local irregularities in the liquidus, which 
significantly influenced liquid velocity, temperature 
and composition fields, and hence the predictions of 
& For times following the formation of these inter- 
face irregularities, transient fluctuations in & were 
observed for both the 42 x 42 and 52 x 52 grids, and, 
since the 42 x 42 grid could not precisely reproduce 
local irregularities predicted using the 52 x 52 grid, 
quantitative differences were observed. Qualitatively, 
however, results obtained using the 42 x 42 grid cap- 
ture all of the physical features predicted by the finer 
52 x 52 grid. Hence, the significant additional com- 
putational costs associated with achieving quan- 
titative grid independence could not be justified. 

Satisfactory time step independence was achieved 
by using At = 3 s (At* = 2.97 x 10-3 throughout the 
case I simulation. For case II, this time step was 
doubled when growth rates (8x/&) fell below 1.8 x 1O-4 
S -I. Iteration within each time step was employed 
to accommodate the highly non-linear and coupled 
nature of the equations. The number of iterations 
required for convergence varied from time step to time 
step, but was generally highest for times just following 
the onset of solidification. Iterations were terminated 
when changes in the average heat extraction from the 
chilled wall & changes in total mass fraction solidfs, 
and changes in minimum and maximum compositions 
were each below 0.001%. Computations were carried 
out on a Cyber 205 super computer and, for the 
42 x 42 grid, required approximately 200400 CPU 
seconds for each 30 s of real time simulation. The total 
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CPU time required to complete the case I and II Table 1. Thermophysical properties of NH&?-H 2O 
calculations was 3.8 and 8.9 h, respectively. (a = H,O) 

The continuum formulation and numerical solution 
procedures have been successfully verified through 
comparisons with existing one-dimensional exact 
solutions (Neumann problems), as well as with 
reported two-dimensional numerical results [ 151 for 
the limiting case of discrete phase change of a pure 
substance without advection. For diffusion-domi- 
nated situations, the continuum energy equation (4) 
is identical to classical enthalpy based models, except 
that, for numerical convenience, the Fourier diffusion 
flux has been separated into two terms. This decompo- 
sition eliminates temperature as an explicit-dependent 
variable and hence facilitates the use of well-estab- 
lished numerical procedures for dealing with elliptic 
partial differential equations. 

The ability of the formulation to accommodate 
buoyancy driven flows has been verified through com- 
parisons with existing benchmark solutions [29] for 
single-phase, thermally induced natural convection in 
a square cavity with differentially heated vertical side- 
walls and insulated horizontal boundaries. For a 
42 x 42 grid, a Prandtl number of 0.71, and thermal 
Rayleigh numbers up to 106, average Nusselt numbers 
agreed to within 2%. Hence, the numerical procedures 
accurately accommodate advective components of 
momentum and energy transfer. Also, since the cal- 
culations were performed using continuum con- 
servation equations developed for multiphase prob- 
lems, the agreement verifies that the continuum 
equations transform, as they must, to well-established 
single phase conservation equations. 

Solid Liquid 

Specific heat (J kg-’ K- ‘) 1870 3249 
Thermal conductivity (W m ~’ K ‘) 0.393 0.468 
Density (kg m _ I) 1078 1078 
Diffusion coefficient (m’ s ‘) 4.8 x 10 ” 
Viscosity (kg m- ’ s ‘) 1.3 X IO_ ’ 

Latent heat of fusion, h, (J kg ’ ) 3.138 X 10’ 
Permeability coefficient, K, (m’) x lo- 
Thermal expansion coefficient, b7 (K x 10 

T, (K) 

k, 0.30 

A (H = 0.1 m) 
Pr 9.025 
SC 251.3 

Da 8.896x IO ’ 

x 10’/2.514 10’ 
0: 
0 7.m 7.064 
T.‘ -0.650 

opposite wall maintained at Th = T, (case I) or adia- 

in 
Table 1. 

Comparison of the of this 
is precluded by the 

of such in binary 
by the of reliable 

to insure of this 

I: di@rentially 

3. RESULTS 

Figures 3-7 illustrate velocity, streamline, isotherm 
and liquid isocomposition distributions for case I at 
dimensionless times oft* = 0.009,0.018,0.036,0.071, 
and 0.142, respectively. Velocity vectors shown in each 
figure are based on the continuum velocity com- 
ponents u and v which, for V, = 0, can be alternately 
expressed as f;~, and f;v,, respectively. For the sake of 
clarity, solidus and liquidus contours are shown only 
on the velocity plots and represent lines corresponding 

to h* = 0 and I, respectively, where h* = (h -17,C,1Y 

(h,,, - hs,,). 

Calculations were performed for an aqueous solu- 
tion of ammonium chloride (NH4Cl-H,O). This sys- 
tem was chosen because flow visualization results have 
been reported [4, 7-91, thermophysical property data 
are relatively well established [4, 26, 30, 311, and the 
system exhibits dendritic growth which is analogous 
to an important class of metal alloys. Since the prob- 
lem of interest depends on eight dimensionless par- 
ameters, a comprehensive parametric investigation 
was deemed impractical and, in fact, unnecessary to 
demonstrate the capabilities of the continuum model. 
Calculations were therefore performed for a fixed, but 
representative, set of initial (T, = 311 K, &, = 0.700) 
and cold wall (Tc = 223 K) conditions, with the 

Due to the existence of counter rotating cells. 
stream functions in the bulk liquid and mushy regions 
are of opposite signs. Maximum streamfunction 
values are therefore designated by $,,,,, and ($III.X,S+ ,I 
in the bulk liquid and mushy regions, respectively, 
and can be used to infer the relative strengths of recir- 
culating flows in these regions. In each of Figs. 3(b)- 
7(b), bulk liquid streamlines are plotted in increments 
of 1/1,,,,,/10 and mushy region streamlines in incre- 

ments of Itimax,s+ d/4. 
Isotherms depicted in Figs. 3(ck7(c) represent lines 

of constant T* = (T- TJ(T,- T,), with the chilled 
and heated vertical boundaries represented by T* = 0 
and 1, respectively. Liquid isocomposition lines 
shown in Figs. 3(d)-7(d) represent lines of constant 
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(a) - 5.5 mm/s 
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(b) (d) 
FIG. 3. Solidification behavior at t* = 0.009 for case I: (a) velocity vectors, (b) streamlines 
&nan,i = 1.53 x 10-2, I$ max,s+ll = 6.05 x 10-3, (c)isotherms, (d) liquid isocompositionlines (flmin = 0.700). 

(a) -+ 7.4mm/s (b) 
So~difi~tion behavior at 
1.70 x IO-‘, l$,,,,+,l = 8.26 x 

(cl 
t* = 0.018 for case 1: (a) 
10-3, (c)isotherms, (d) liquid 

velocity vectors, (b) streamlines 
isocomposition lines (j&, = 0.701). 

(df 
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(a) - 8.1 mm/s 

- 

(b) 

FIG. 5. Solidification behavior at I* = 0.036 for case I: (a) velocity vectors, (h) streamiines 
(+mai,l = 2.04 x IO-*, I$,,,,,,,+,l = 6.74 x IO- “), (c)isotherms, (d) liquid isocomposition lines (/;‘,,,,; 7 0.709). 

(a) - 7.8mm/s (b) id) 

FIG. 6. Solidification behavior at L* = 0.071 for case I: (a) velocity vectors, (b) streamlines 
($mar,, = 1.71 x lo-‘, IJlm.r,s+,l = 1.97 x 10d4), (c)isotherms, (d) liquid isocomposition lines (./&., = 0.719). 
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(al - 7.9mm/s (b) (d) 

FIG. 7. Solidification behavior at t* = 0.142 for case I: (a) velocity vectors, (b) streamlines (Gmar,l = 
1.71 x 10-2, I$ mar,s+,l = 6.19 x 10-5), (c) isotherms, (d) liquid isocomposition lines (J&, = 0.725). 

f = v;” -fiHmd/cfip -_I&,). w&h species m car- 
responding to Hz0 and the solidus line representing 
the maximum liquid composition f;* = 1. Both T* 
and J;* are plotted in increments of l/20. 

Figure 3 illustrates conditions at t* = 0.009 (t = 
90 s). Solidification is initially characterized by a rapid 
propagation of solidus and liquidus fronts, which 
remain nearly planar and free of irregularities. The 
isotherms (Fig. 3(c)) indicate that temperature gradi- 
ents are concentrated in the solid, and to a lesser 
extent mushy, region and that energy transport is 
approximately unidirectional and conduction domi- 
nated. Deviations from linearity in the outer extent of 
the mushy region and in the liquid core result from 
advective flows of interdendritic and bulk fluids, 
respectively. 

Liquid composition profiles (Fig. 3(d)) show that 
gradients are confined primarily to the mushy region, 
with the bulk fluid core remaining at approximately 
the initial composition. Hence, the recirculating flow 
in the bulk liquid is initially due to thermal buoyancy. 
However, while hydrodynamic and thermal boundary 
layer development on the heated vertical surface is 
analogous to that occurring in classical single phase 
cavity problems [29], downhow of bulk fluid along 
the chilled liquidus cannot be viewed in the same 
manner. In particular, the permeable liquidus inter- 

face is not a no-slip boundary and, as illustrated in 
Fig. 3(a), can accommodate advective transport. 

Within the mushy region, solutally driven flows 
of lighter, water rich interdendritic fluids establish a 
recirculation pattern in which upflow occurs near the 
solidus and downflow occurs just inside the liquidus. 
Upflows established nearest the solidus have the larg- 
est (nearly eutectic) concentration of water and are 
able to ascend further than flows established closer to 
the liquidus. Although most of the interdendritic fluid 
is contined to the recirculating flow within the mushy 
region, the momentum of upflow along the solidus is 
sufficient to facilitate penetration of the liquidus by 
a portion of this fluid. As shown in Fig. 3(d), this 
penetration creates a water rich fluid layer at the top of 
the cavity. The extent to which this layer can penetrate 
horizontally along the cavity top is limited by the 
strength of the opposing, thermally driven flow in 
the bulk fluid. A liquidus temperature depression 
accompanies the water enrichment of bulk fluids at 
the top of the cavity. Together with the incidence of 
warm fluid driven by the heated vertical boundary, 
this depression causes a reduction in local growth 
rates and a thinning of the solidus and liquidus fronts 
near the cavity top. 

It is important to recognize that, while thermal and 
solutal influences are independent in the bulk liquid 
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core, they are not independent, by virtue of equi- 
librium assumptions, within the mushy region. That 
is, although buoyancy contributions appearing in the 
y-momentum equation can be written as [Ra& 
-Ra&, within the mushy region the contributions 
can be expressed exclusively in terms of the tem- 
perature Q,-, [(Ra= - (@$3,,,)Ra,)0,]. For the con- 
ditions of this study (Table l), this result implies that, 
under the influence of gravity alone, buoyancy driven 
upflow would persist throughout the mushy region. 
Hence the downflow which is predicted to exist near 
the liquidus of the mushy region (Fig. 3(a)) must be 
due to the penetration of bulk liquid across the liquidus 
interface and to the attendant shear forces imparted 
to neighboring interdendritic fluids. The penetration 
of interdendritic fluids into the liquid core at the cavity 
top suggests that, in this region, advective flows out- 
side the liquidus are of insufficient strength to over- 
come buoyancy driven upflows within the mushy 
region. 

The flows within the bulk liquid and mushy regions 
which are suggested by Figs. 3(a) and (b) are con- 
sistent with qualitative experimental observations 
made by previous investigators. Using Schlieren pho- 
tography and injection of dye tracers, recirculating 
flows characterized by downflow along the liquidus 
and upflow along an opposing heated vertical bound- 
ary have been observed within the bulk fluid of an 
ammonium chloride-water casting [4]. In addition, 
Schlieren photographs [4] confirm the existence of a 
water rich fluid layer in the bulk fluid at the top of the 
cavity. 

Although they are more difficult to perform, obser- 
vations of recirculating flows within the mushy region 
have been made by introducing crystals of potassium 
permanganate into NH ,,Cl-H *O castings [8,9,26]. In 
these studies, flows of rich interdendritic fluids within 
the mushy region (Fig. 3(b)) have been identified as 
the primary cause of channel-type ‘A’ and ‘V’ seg- 
regation observed in large commercially cast metallic 
ingots. 

Figure 4 (t = 180 s) indicates significant deviations 
from planar, conduction dominated phase change. A 
solutally driven recirculating cell persists within the 
mushy region (Fig. 4(b)), and as shown in Fig. 4(d), 
there is slight erosion of the water rich layer at the 
cavity top. Erosion of this layer, as well as outflow of 
interdendritic fluids from the mushy region, leads to 
a double-diffusive downflow of water rich fluid along 
the liquidus, with subsequent uptlow along the heated 
vertical boundary. Conditions are double-diffusive in 
the sense that temperature and composition gradients 
make opposing contributions to the vertical density 
distribution and the diffusivities of energy and species 
transport are different (Le # 1). While thermal buoy- 
ancy effects dominate and downflow persists along 
the liquidus, the nearly uniform velocity profiles in 
this region (Fig. 4(a)) and the reduction of bulk fluid 
penetration into the mushy zone provide a clear indi- 
cation of the increased significance of opposing solutal 

buoyancy forces. Following deflection of the down- 
flow by the bottom wall, positive thermal and solutal 
buoyancy effects combine to induce a strong upflow 
along the heated wall. When the heated, water 
enriched fluid returns to the liquidus front, it reduces 
growth rates and also contributes to localized remelting 
in a small portion of the mushy region at the cavity 
top. 

Localized remelting and growth rate variations 
initiate the formation of irregularities in the liquidus 
front, which are clearly revealed in Fig. 4(a). Once 
established, interface distortions contribute to fluc- 
tuations (i.e. irregular variations with time) in 
velocity, temperature and composition fields within 
the bulk fluid. Distortions in the bulk liquid stream- 
lines (Fig. 4(b)) and bulk liquid isotherms (Fig. 4(c)), 
particularly near the liquidus interface, are attributed 
to the existence of opposing thermal and solutal buoy- 
ancy forces, as well as to the presence of interface 
irregularities. 

Solidification phenomena at t = 360 s are illus- 
trated in Fig. 5. Local variations in the growth rate of 
the liquidus and macroscopic remelting resulting from 
thermal and solutal fluctuations in the bulk fluid 
manifest themselves in the establishment of a highly 
irregular liquidus front morphology (Fig. 5(a)). as 
well as the formation of liquid pockets within the 
mushy zone. While counterclockwise recirculation 
persists in the bulk fluid, the irregular liquidus front 
morphology, combined with the competing influences 
of thermal and solutal buoyancy forces, significantly 
distorts the bulk fluid velocity field (Fig. 5(a)) and 
streamlines (Fig. 5(b)). 

The existence of a highly irregular liquidus interface 
has been experimentally observed for NH,CllH,O 
systems [4,7, 81. To the authors’ knowledge, however, 
the present results represent the first numerical pre- 
dictions of such interface behavior. Although the pre- 
cise size and location of localized interface irregu- 
larities were found to be grid dependent, their 
appearance was not. Furthermore, such irregularities 
can be attributed to plausible physical mechanisms. 
While the present continuum formulation easily 
accommodates the formation of irregularities on inter- 
nal boundaries, conventional multiple region for- 
mulations, which rely on the ability to track interface 
motion, would be difficult (if not impossible) to 
implement for phase change systems which exhibit 
this interface behavior. 

Liquid composition profiles (Fig. 5(d)) reveal con- 
tinued erosion of the water rich fluid layer at the cavity 
top and further development of the water rich fluid 
layer which descends along the liquidus front and 
ascends along the heated vertical surface. Distortions 
in the isocomposition lines which appear in the top 
half of the mushy region are coincidental with the 
liquidus front irregularities and correspond to the 
existence of confined liquid pockets. 

Streamlines corresponding to solutally driven tlow 
in the mushy region are no longer concentric, with 
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secondary cells forming near the liquidus front at 
locations near and below large irregularities in the 
front (Fig. 5(b)). Formation of these secondary cells 
is attributed primarily to shear forces which result 
from penetration of bulk fluids into the mushy region 
near the interface irregularities. 

Temperature and liquid composition fields in the 
bulk fluid illustrated on both Figs. 4 and 5 are con- 
ducive to the formation of salt fingers [32], with warm 
salty fluid overlying cold salt-deficient fluid. The for- 
mation of these fingers is, however, inhibited by the 
strong counterclockwise bulk fluid recirculation. 

After 720 s, solidification rates have slowed con- 
siderably at both the solidus and liquidus fronts, and 
liquidus front irregularities continue to distort the 
velocity field and associated streamlines within the 
bulk liquid (Figs. 6(a) and (b)). Moreover, as shown 
in Fig. 6(d), the water rich fluid layer at the top of the 
cavity has been totally eroded by the recirculating flow 
in the liquid core, and the bulk liquid attains a well 
mixed, water enriched state. The absence of com- 
position gradients within the bulk fluid indicates that, 
as for t* = 0.009, bulk liquid recirculation is again 
driven almost exclusively by thermal buoyancy forces. 
While significantly weakened, solutally driven flows 
persist within the mushy zone (Fig. 6(b)). The 
reduction of mushy region permeability which 
accompanies slower growth rates, however, limits the 
vertical penetration of these water rich interdendritic 
flows. Mushy region recirculation is again con- 
centrated in regions near the liquidus front and below 
macroscopic interface irregularities. 

Figure 7 illustrates conditions after 1440 s, and is 
representative of a quasi-steady condition 
(ax/at 5 lo- 5 s- ‘). The bulk fluid, while enriched 
in water, remains well mixed and free of significant 
composition gradients (Fig. 7(d)). Hence, recir- 
culation in the bulk fluid, while distorted by the per- 
sistence of liquidus front irregularities, remains driven 
by thermal buoyancy forces. Due to the decline in 
permeabilities, solutally driven recirculation within 
the mushy region is weak and confined to the cavity 
bottom. 

Figure 8 depicts the transient behavior of average 
dimensionless hot (q$) and cold (4:) wall heat fluxes, 
as well as the total mass fraction of solid (fs). Only 
the magnitudes of the average heat fluxes are 
presented, with gz and $ representing energy extrac- 
tion and addition, respectively. 

Heat extraction from the chilled surface (@) 
declines rapidly during the initial stages of solidi- 
fication, when growth rates are large, and quickly 
approaches a quasi-steady value. As the isotherms 
of Figs. 3(c)-7(c) suggest, temperature distributions 
within the solid layer are nearly linear throughout the 
phase change process. This observation, combined 
with the fact that the solidus represents an isotherm 
corresponding to the eutectic temperature T,, suggests 
that qz is proportional to the solid layer thickness. As 
such, any irregularity in the variation of $’ with time 

--t 
q 

*l-----l”*” 

t’ 
FIG. 8. Transient variations of average dimensionless wall 

heat fluxes and total solid mass fraction for case I. 

can be related to the irregular, time-dependent nature 
of solidus front growth. As Fig. 8 illustrates, this 
growth is alternatingly rapid (rapid decay in 4:) and 
slow (weak decay in $). 

For t* 5 0.015, when growth rates are rapid, 
increases in the average hot wall heat addition ($) are 
smooth. For t* 2 0.015, however, there are transient 
random fluctuations in $ which persist throughout 
the numerical simulation. Supporting evidence of such 
fluctuating behavior has been provided by qualitative 
experimental observations [7] using bench scale 
NH4Cl-H,O castings. In this investigation, fluc- 
tuating behavior is attributed to local growth rate 
variations or remelting that occurs as a consequence 
of thermal and solutal fluctuations in the liquid phase. 
In order for thermal and solutal fluctuations to mani- 
fest themselves in remelting (or local growth vari- 
ations), diffusion coefficients associated with the 
transport of energy and species must differ (Le + 1). 
For the present NH&l-H20 systems (Le = 27.8), 
energy diffuses more rapidly than species and energy 
liberated in one region of the casting can cause remelt- 
ing in surrounding regions of different composition. 
It has also been observed [7] that remelting occurs 
only in the absence of steep temperature gradients. 
The present calculations confirm this observation, as 
remelting was not predicted in the early stages of 
solidification and, when predicted, was primarily con- 
fined to outer portions of the mushy region. The tIuc- 
tuations in $ (Fig. 8) are therefore attributed to the 
effect which the formation of liquidus front irregu- 
larities has on velocity and temperature fields within 
the bulk liquid. In contrast, throughout the sol- 
idification process, the average solid phase growth 
rate (aj”,/at*> remains much smoother, irrespective of 
localized variations in growth rate or remelting. 

Figure 9 illustrates dimensionless hot (4:) and cold 
(4:) wall heat flux distributions corresponding to the 
times selected for Figs. 3-7. For each time, heat fluxes 
at the heated boundary exhibit maxima and minima 
at the cavity bottom and top, respectively. The smooth 
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FIG. 9. Dimensionless wall heat Rux distributions for case 1. 

decay in qz with increasing y* is due to a gradual 
warming of the fluid as it ascends along the hot bound- 
ary, The dimensionless heat Rux qz, which can be 
interpreted as a local Nusseh number defined in terms 

(01 - 3.6mm/s 

of the temperature difference T,- r,, exhibits trends 
similar to those for classical single phase cavity prob- 
lems. 

Local cold wall heat extraction rates shown in Fig. 
9 suggest that, for early times (t* 5 0.018) heat Auxes 
are nearly uniform over a large portion (J>* 6 0.8) of 
the chilled boundary. This observation again implies 
that energy transport during the early stages of sol- 
idification is unidirectional and conduction 
dominated. Increases in q: occurring near the cavity 
top are attributed to the previously described ‘thin- 
ning’ of the solidus and Iiquidus fronts. These 
increases become more pronounced at later stages 
of the solidification process, indicating a significant 
deviation from unidirectional, conduction dominated 
PhaSe Hillel. 

3.2. insulated sidewall 

Figures LO-14 illustrate solidification behavior for 
case II at dimensionless times of t* = 0.009, 0.024, 
0.214. 0.303, and 0.404, respectively. The graphical 
presentations correspond to those of case I, except 
that mushy region streamlines are plotted in 
increments of /$,,,,,,+,1/5. Also, since the insulated 
vertical boundary no longer provides a suitable ref- 
erence temperature, isotherms presented for case II 
represent lines of constant T* = (T- T,)/( T,,, - T,). 

Figure 10 illustrates conditions at r* = 0.009 

(b) (dl 

FE. 10. Solidification behavior at f* = 0.009 for case II: {a) velocity vectors, (b) streamlines 
(JIltI,,,, = 1.07 x lo--*, J$max,~,,l = 1.32x 10w3), (c) isotherms (IT,,,, = 310.2 K), (d) liquid isocomposition 

lines (f;Pm,” = 0.700). 
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(a) + 0.98 mm/s (b) (d) 

FIG. 11. Solidification behavior at t* = 0.024 for case II: (a) velocity vectors, (b) streamlines 
Wmar,l = 2.41 x lo-‘, I+ _a+lj = 2.33 x 10e3), (c) isotherms (T,, = 305.3 K), (d) liquid isocomposition 

lines (j&, = 0.702). 

(a) --, 0.04 mm/s 

J 

(b) (cl (d) 
FIG. 12. Solidification behavior at r* = 0.214 for case II: (a) velocity vectors, (b) streamlines 
(1+,,,.+,1 = 1.16 x 10-3, (c) isotherms (T,, = 271.9 K), (d) liquid isocomposition lines (flmin = 0.773). 
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(a) - O.O2mm/s 

FIG. 13. Solidification 

(b) (d) 

behavior at f* = 0.303 for case 11: (a) velocily vectors, (b) ?lreamheT 

(I$,,.,~ *+ ,/ = 5.7 x 10- 9. (c) isotherms CT ,,,, Ix = 260.6 K). (d) liquid isocomposition lines ( /i”,x., -- 0.797). 

_____ -_- 
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(a) +0.40X164mm (b) (d) 

FIG. 14. Solidification behavior at I* : 0.404 for case 11: (a) velocity vectors, (b) streamlines 
(I$,,,,.,, ,/ = 3.67 x lo-‘), (c) isotherms (T ,“., ~ = 257.8 K). (d) liquid isocomposition lines C f;‘.,,,. = 0.8029). 
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(I = 90 s). While flow in the fluid core is similar to 
that observed for case I (Fig. 3), the absence of a 
sustained positive buoyancy force at the vertical insu- 
lated boundary significantly weakens the counter- 
clockwise, thermally induced circulation. While some- 
what stronger than case I, solutally driven flows are 
still confined primarily to clockwise circulation within 
the mushy region. An exception pertains to the local 
penetration of nearly eutectic composition fluid from 
the mushy to the liquid region at the cavity top. 

Conditions at t* = 0.024 (t = 240 s) are illustrated 
in Fig. 11. Due to a gradual decay in the initial bulk 
fluid superheat, mushy region growth is enhanced and 
thermally induced counterclockwise recirculation is 
confined to a small cell near the cavity top (Fig. 11 (b)). 
In the absence of a strong downflow outside the liqui- 
dus, interdendritic fluids easily penetrate the per- 
meable liquid interface in the top half of the cavity 
(Fig. 11 (a)), establishing a strong clockwise recir- 
culation which, unlike case I, extends significantly 
beyond the liquidus front (Fig. 1 l(b)). The downflow 
of bulk and interdendritic fluids near the liquidus in 
the central portion of the cavity is attributed to a 
clockwise, solutally driven recirculation resulting 
from the water enrichment of interdendritic fluids. 
Hence, conditions differ sharply from those of case I, 
which is dominated by counterclockwise, thermally 
induced bulk fluid recirculation. Through the action 
of viscous forces, the clockwise, solutally driven recir- 
culation of case II enhances motion within the small, 
counterclockwise cell near the cavity top and is, in 
fact, responsible for persistence of the cell well into 
the solidification process. 

As Fig. 11 (d) indicates, the outflow of interdendritic 
fluids from upper portions of the mushy zone estab- 
lishes a solutally stratified region of water enriched 
bulk fluids. However, the chilled interdendritic out- 
flow also establishes a thermally unstable condition 
relative to warmer bulk fluid in lower portions of the 
cavity (Fig. 11 (c)). The S-shaped, horizontal velocity 
profiles near the cavity bottom (Fig. I l(a)) indicate a 
stabilizing exchange of warmer and cooler fluid from 
the cavity bottom and top, respectively. 

Irregularities in the liquidus front (Fig. 11 (a)) occur 
primarily near the cavity top and are attributed to the 
growth rate-reduction which accompanies the water 
enrichment of bulk fluids. The thinning at the cavity 
bottom is attributed to the inflow of warm bulk fluids 
which feed the solutally driven flows within the mushy 
region. 

After 2160 s (Fig. 12), the liquidus front has propa- 
gated to the insulated vertical boundary and only a 
small region of highly water enriched bulk fluid 
remains at the cavity top (Fig. 12(a)). Liquidus tem- 
perature depression, which accompanies the water 
enrichment of this nearly isothermal liquid pool, pro- 
hibits nucleation at temperatures well below the liqui- 
dus temperature corresponding to the initial com- 
position. The fact that nucleation occurs at the 
insulated boundary, forming a V-shaped liquidus 

front, is a clear indication of the influence of local 
composition variations on solidification behavior. 

As Fig. 12(b) illustrates, counterclockwise, therm- 
ally driven recirculation no longer exists within the 
cavity. Solutally driven clockwise recirculation, estab- 
lished by water rejection in the mushy region, again 
penetrates the liquidus front, entering and leaving the 
bulk fluid at the cavity top and descending along 
the vertical insulated boundary. Interdendritic fluid 
motion is strongest in the outer portions of the mushy 
region, where permeabilities are large. Contrary to 
behavior observed in conventional thermally driven 
phase change systems, the upflow of warm inter- 
dendritic fluids (Figs. 12(a) and (c)) leads to a thinning 
of the solid layer at the cavity bottom. 

At t* = 0.303 (Fig. 13), the bulk liquid pool is 
nearly exhausted. While clockwise recirculation per- 
sists (Fig. 13(b)), it is weak (I’,,, = 0.02 mm s- ‘) and 
concentrated in regions surrounding the liquid pocket 
at the cavity top. The nearly planar solidus front (Fig. 
13(a)) provides further confirmation that conditions 
are approaching a diffusion dominated state. Iso- 
therms and liquid isocomposition lines depicted in 
Figs. 13(c) and (d), respectively, indicate that the 
mushy region is nearly isothermal and that inter- 
dendritic fluids are highly water enriched and nearly 
uniform in composition (fle -J;p;N.II = 0.0006). 

Conditions following the total exhaustion of the 
pure liquid region (t* = 0.404) are illustrated in Fig. 
14. Solutally driven mushy region flows are extremely 
weak (I’,,,, = 0.40x low4 mm s-i) and confined to 
regions of largest permeability at the cavity bottom 
(Figs. 14(a) and (b)). Temperature gradients are con- 
lined to the pure solid region (Fig. 14(c)) and remain- 
ing interdendritic fluids are of nearly eutectic water 
composition (Fig. 14(d)). beyond t* = 0.404 and 
proceeding until the cavity is entirely solidified 
(t* = 0.647), solidification is nearly unidirectional and 
diffusion dominated. 

4. CONCLUSIONS 

The capabilities of a newly developed continuum 
model have been demonstrated through application 
to solidification of a binary, aqueous solution in a 
rectangular cavity. Numerical results for aqueous 
ammonium chloride revealed that fluid motion within 
the permeable mushy region is characterized by a 
solutally driven upflow of water enriched, 
interdendritic fluids. The extent to which these inter- 
dendritic fluids penetrate the permeable liquidus inter- 
face is strongly influenced by the nature of thermally 
induced motion in the adjoining liquid core. In the 
presence of a strong, thermally driven, counter rotat- 
ing, bulk fluid recirculation, most of the interdendritic 
flow is confined to recirculation within the mushy 
region. If the thermally driven, bulk fluid recirculation 
is weak, however, chilled and water enriched inter- 
dendritic fluids penetrate the liquidus, establishing 
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potentially unstable and double-diffusive conditions 
within the liquid core. Macroscopic species redis- 
tribution, which accompanies this mushy region out- 
flow, significantly affects future phase change 
behavior contributing to localized growth rate vari- 
ations, remelting, and the formation of irregular Iiqui- 
dus front morphologies. Combined with the desta- 
bilizing influence of exuded interdendritic ‘fluids, 
macroscopic interfacial irregularities have been shown 
to induce fluctuations in transport across the bulk 
liquid core. 

Unlike discrete, single constituent phase change, it 
is difficult to generalize results for binary phase change 
systems. While nondimensionalization of the con- 
servation equations yields some insight on process 
complexities, it is unable to collapse all of the pertinent 
parameters. In addition to depending on indivi- 
dual phase the~ophysicai properties, soiidi~cation 
depends on microscopic/atomic level characteristics 
which describe phase interactions and the partitioning 
of species among coexisting phases. Furthermore, due 
to complex interactions between thermal and solutal 
buoyancy forces and their influence on species redis- 
tribution, binary system phase change is history 
dependent and is strongly influenced by externally 
imposed boundary conditions. 

While continuum formulations have received little 
attention, they provide an attractive alternative to 
conventional multiple region solutions for problems 
involving multiconstituent phase change. In fact, for 
many problems of indust~al~scientific signi~cance. 
which involve complex geometries and boundary con- 
ditions, irregular interface morphologies, and/or sim- 
ultaneous nucleation at mutually exclusive domain 
locations, continuum formulations may well provide 
the only viable means of analysis. 
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UN MODELE CONTINU POUR LA QUANTITE DE MOUVEMENT, LA CONVECTION 
DE CHALEUR ET DE MASSE DANS LES SYSTEMES A CHANGEMENT DE PHASE 
SOLIDE-LIQUIDE-II. APPLICATION A LA SOLIDIFICATION DANS UNE CAVI fE 

RECTANGULAIRE 

R&aun&Un modele nouveau est utilise avec un schema bien btabli a volumes de contrdle et differences 
finies pour Studier la solidification dune solution aqueuse de chlorure d’ammonium dans une cavite 
rectangulaire. Le transfert advectif des fluides interdendritiques a travers l’interface permeable du liquidus 
est identifie comme le mecanisme primaire dune redistribution macroscopique des esp&es. L’ttendue de 
cette penetration est gouvem&. par les intensites relatives des ecoulements de la region mixte et des 
&zoulements thermiquement conduits dans la masse liquide. Des conditions instables et doublement diffusifs 
qui accompagnent la d&charge des fluides interdendritiques vers le coeur liquide resultent des variations 
locales de vitesse de croissance, de la refusion et du comportement fluctuant du transport global de fluide. 

EIN MODELL FUR IMPULS-, WARME- UND STOFFIRANSPORT IN BINAREN FEST- 
FLUSSIG-PHASENWECHSELSYSTEMEN-II. ANWENDUNG AUF DIE ERSTARRUNG IN 

EINEM RECHTECKIGEN HOHLRAUM 

Znsammenfaasnng-Die Verfestigung einer biniiren, whsrigen Ammonium-Chlorid-L6sung in einem 
rechteckigen Hohlraum wurde mit Hilfe eines jiingst entwickelten Kontinuum-Modells untersucht. Die 
Liisung erfolgte mit einem wohlerprobten Finite-Differenxen-Verfahren. Der advektive Transport von 
interdentritischem, mit Wasser angereichertem Fluid wurde als prim&rer Mechanismus Bir die makroskop 
ische Stoffverteihmg erkannt. Das AusmaB dieser Eindringung wird durch die relative Stirke der kon- 
zentrationsgetriebenen Strdmung in der noch weichen Zone und der therm&h getriebenen Stromung in; 
Kern bestimmt. Instabile und doppel-diffusive Bedingungen, die das Endringen des interdendritischen 
Fluids in den fliissigen Kern begleiten, wurden als Verursacher von lokalen Unterschieden der Wachs- 
tumsrate, von Wiederschmelxungen und von vertiderlichem Transportverhalten im Flilssigkeitskem auf- 

gezeigt. 

@EHOMEHO.lIOI-HYECKHE YPABHEHkDI I-IEPEHOCA KOJIHYECTBA ~IDKEHIDI, 
TBIUIA II MACCbI B EllHAPHbIX CkiCrEMAX TBEPAOE TEJiO-lKWAKOCTb l-IPki 
cPA3OBbIX M3MEHEHmX-II. l-IPkiMEHEHkiE JJJIJI CJIYYA5I 3ATBEPAEBAHHJl B 

I-IPfiMOWOJIbHOft llOJlOCU4 

AIEOT~&UI siccnenonamur 3araepneaakma 6mrapnoro pacrsopa somioro x.nopmcroro a~~~aiia B 

IIpnMO~OAbHOii IIOJIOCTH HCIlOJIMJ'eTCS HeAaBHO paspa6oramraa MOAeJlb IIpOUeCCOB IIepeHOCa COB- 

M~~THO c ee UacneHHol peamismeti. B ~awxne oc~on~oro MexariHsMa nepepacnpenenemix ~axpoc- 
KOIIEWCKAX KOJIWWCTB BeWeCTBa paCCMaTpHBaeTC%l nepeJK?C B BOAe B3aEMliOAeHApSTOBblX WiAKOCTeti 

~O~~K~pO~UaeMo%~O~pxA~Epa3Ae~~~~~~.~JrwRHa3TO~O~OH~OBe~38BHCETOT 

OTHOCETeJIbHhIX 3Ha'Ied paCTBOpaMOCTH H TellJIOBbIX IIOTOEOB B o6aehle ;sramtoC~~. ~OKSUiO, ST0 

YCJIOBHJl He)'CTaHOBHBIIIeihl E B3aEiMEOfi AJil$4Y3HE,KOTOpbIe COIIpOBOWloT paCXOA BH),TpEiAeHApE- 

TOB~IX xcwwometi B XApO noToXa x~AXorm,npmOm II noXa.nbAhIM mr+feHemfgM cxopomi pocra, 


